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1. INTRODUCTION 

The short-phase laser heating process of  metals is composed 
of  three general steps : the deposition of  radiation energy 
on electrons, the transport of  energy by electrons and the 
propagation of energy through media. The propagation of  
energy during a relatively slow heating process can be mod- 
eled by the Fourier heat conduction model, since the depo- 
sition of  radiation energy can be assumed to be instan- 
taneous. However, it takes time, in reality, to establish an 
equilibrium state in thermodynamic transition. For  a prob- 
lem involving reflectivity change resulting from short-pulse 
laser heating on gold films [1], the response time is on the 
order of picoseconds, comparable to the time required to 
establish an equilibrium state. The diffusion theory fails 
under such circumstances because the hot electron gas and 
the metal lattice cannot reach thermodynamic equilibrium 
in such a short period of time. Thus, more general and 
rigorous models are needed to include effects of  electron- 
lattice interactions and non-Fourier transport. After 
Maxwell's research [2] on the kinetic theory of  gases, which 
has had great influence on the development of the thermal 
wave theory, modifications on Fourier's law are promoted 
by its deficiencies in advanced applications [3-16]. 

The unified model (Tzou [16]) is a generalized approach 
based on the dual-phase-lag concept which accounts for the 
lagging behavior in the high-rate response. A universal 
constitutive equation between the heat flux vector and the 
temperature gradient is proposed with an effort to cover a 
wide range of  physical responses from microscopic to macro- 
scopic scales in both space and time [16]. An exact solution, 
using the method of  separation of  variables, to the above 
universal constitutive equation for a one-dimensional prob- 
lem is addressed in this paper. Part of  the results are found 

to be different from those by Tzou [16]. The aim of this note 
is to present a convenient approach to the short-pulse laser 
heating problem by virtue of the unified heat conduction 
equation. 

2. THEORETICAL ANALYSIS 

The short-pulse laser heating of  a metal film can be treated 
as a one-dimensional problem because its heat penetration 
depth is much smaller than the beam diameter. The solid is 
assumed to have a finite thickness, l. The phase lag of the 
heat flux and that of  the temperature gradient are Zq and zx, 
respectively. An initial temperature distribution of  constant 
value, To, in solid and an imposed initial time-rate change of  
temperature, ~0, are given. A suddenly-raised temperature 7", 
at left end x x 0 and a zero temperature gradient remaining at 
right end x = l are suitable boundary conditions for this type 
of problem. After introducing the following dimensionless 
variables as in ref. [16], 

T-To  x t 
O = T w _ ~ ,  6= 7 , and 3=(12/ot ) (1) 

the temperature field equation, the initial conditions and the 
boundary conditions become : 
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(2) 

and 

00 
0 = 0  and ~ = 0 o  a t f l = O  (3) 

cO 
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t Author to whom correspondence should be addressed. 0 = 1 at 6 = 0 and ~ = 0 at 6 = 1 (4) 
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Greek symbols 
a thermal diffusivity 
fl dimensionless time variable 
F dimensionless temperature component 

NOMENCLATURE 

the eigenvalue components of  the 6 
dimensio:aless time variable 2 
the coefficients for complex conjugate 
roots # 
the discriminant of the characteristic 
equation 
the coeflidents for distinct real roots 0 
the coefficients for a double root 
length of  the one-dimensional solid 
heat flux 
time variable 
absolute temperature 
space variable 
dimensioaless relaxation time. 

dimensionless space variable 
the eigenvalue of  the dimensionless time 
variable 
the eigenvalue of the dimensionless space 
variable 
phase lag or relaxation time 
dimensionless temperature. 

Superscripts 
+ solutions for distinct real roots 
0 solutions for a double root 
- solutions for complex conjugate roots. 

Subscripts 
n nth value 
0 initial value 
q heat flux vector 
T temperature gradient 
w quantity at the wall. 

where 

Z T - -  
- -  "CT "~q , and 0 0 = T  0 12lot 

(12fix) , Zq -- (12/(x) T w _  To 

By using the method of  separation of  variables, one can 
easily find the solutions of  equations (2)-(4) as follows: 

When Zq = 0, 

0.(6,fl) = 1 + ~ G.e a"a sin#.6 (5) 
n = l  

where 

2 n -  1 
/t n = ~ re, 

and 

When Zq ~ 0, 

t o rn  = 1.2,3 . . . . .  2. = - -  

- 2  
a n ~ - - .  

la,, 

0.(6,~) = 1+ ~ F.  sin#.6 
n = l  

1 + Z T ~ 2  

where 

2n-- 1 
/ t . = ~ - - n ,  f o r n = l , 2 , 3  . . . . .  

t F fo rD.  > 0 

F . =  F ° f o r D . = 0  

I F ;  f o r D . < 0  

and 

Dn 2 2 2 =:(1 +ZT#.) --4Zq#. 

r ,  + (6,//) := e-A.a[Eoe -n"~ + F,e n"a] 

and 

where 

F°(3, fl) = e-A.a[G. +H.fl]  

F.(6, fl) = e-A-e[G, cos B.fl+ C. sin B.fl] 

A = I + z T # ~ ,  B I x / ~ 1  
2Zq 2Zq 

Oo--A. - -B.  - -Oo+A, - -B ,  
E o -  F. , 

B.•. B.m 

- 2  2(00 - a . )  H. 
G . = - - ,  H. - - ,  and C . = f f .  

#. #. 

(9b) 

(9c) 

3. RESULTS AND DISCUSSION 

Figure 1 shows the temperature distributions along the 
thickness direction of  the metal film. In contrast to Tzou's 

(6) result [16], several distinct features are found : (1) the tem- 
peratures decrease with increasing values of  zr near left end 
of  the film, i.e. ~ ~< 0.2, which is opposite to the trend in 
Tzou's ; (2) the absolute values of  the temperature gradients 
near left end for zr/> 0.04 are larger than those in Tzou's ; 
(3) unlike 0 ~ 0.4 6 ~ 1 for zr = 0.5 in Tzou's, the tem- 
perature goes to a small value near right end of  the film for 
the same zr. 

To identify the reason for the above diverging phenomena 
based upon the same constitutive equation, an attempt is 

(7) made to simulate the most arguable curve, ZT = 0.5, in Fig. 
1 of  Tzou's [16] ; the comparison is shown in Fig. 2. First of  
all, equation (8) can be rewritten as: Dn =(1--zT#~)2+ 
4(zT -Zq)g~. Thus, D, is always greater than zero for zT > Zq, 
which is the case : zT = 0.5 and Zq = 0.05 in Fig. 2. Under 

(8) such circumstances, F~ +, equation (9a), is the only for- 
mulation for F,  in the summation part of  equation (6), for 
temperature 0. This correct correspondence is depicted as a 
solid line in Fig. 2. However, when replaced, the above F~ + 

(9a) by F~-, equation (9c), into equation (6) for the same case : 
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Fig. 1. The temperature distributions along the metal film 
for ~ = 0.05, Zq = 0.05, and zr = 0.0 to 0.5• 
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Fig. 2. The temperature distributions along the metal film 
for fl = 0.05, Zq = 0.05, and ZT = 0.5. The solid line rep- 
resents the result using the method of separation of variables, 
equation (9a). The A symbols represent the simulated result 
using equation (9c) for an inconsistent condition, D, > 0. 
The dashed line represents the solution of Tzou's study, ref. 

[16]. 

zr = 0.5 and Zq = 0.05, the calculation is shown using symbol 
A in Fig. 2. A coincident agreement is found between this 
calculation and that of Tzou's, depicted in dashed line. 
Because the numerical inversion of  Laplace transforms [17] 
is used, the results in Tzou's [16] missed the condition of 
positive values of D,. Thus, it serves to pay attention to the 
applicability of  the method of numerical Laplace inversion, 
when used, in addition to the choice of parameters for the 
convergence of the discretization error and the truncation 
error. 

It should also be noted that the solution of 0 in equation 
(6) requires more than one formulation of  
F,, ( F ~ , F ° , o r  FE), at a fixed position, 6, and at a fixed 

moment, fl, for a fixed set of parameters zr and Zq (see 
Appendix)• 

As for the case when Zq = zr (not necessarily equal to 
zero), the temperature distribution with several sets of equal 
values Of Zq and zv are depicted in Fig. 3. An intrinsic assump- 
tion on the classical diffusion theory is an instantaneous 
response, which means it takes no time for electrons to 
change their states, or Zq = Zv = 0, when establishing an equi- 
librium state during a thermodynamic transition. However, 
the lagging behavior of temperature distribution becomes 
more obvious with increasing values of Zq and ZT even if they 
are of the same value. Therefore, an equal value of Zq and Zv 
certainly cannot promise an instantaneously-reached ther- 
modynamic equilibrium state, i.e. a classical diffusion field. 

Although a finite value of relaxation time leads to a steep 
drop of the temperature gradient near left end of the film, 
see Fig. 3, the temperature distribution tends to return to a 
'diffusive' type as time goes, see Fig. 4. The temperature 
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Fig. 3. The temperature distributions along the metal film 
for fl = 0.05 and Zq = ZT = 0.~0.5. 
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Fig. 4. The temperature distributions along the metal film 

for Zq = ZT = 0.05 and fl = 0.01-0.21. 
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distribution in the whole film rises to a higher value with 
increasing time ft. The time rate of increment for this tem- 
perature evolution near right end of the film is in a speeding- 
up fashion, while that near the left end is slowing down. 

4. CONCLUSION 

The method of separation of variables gives a general exact 
solution to the one-dimensional unified heat conduction 
equation. This solution is characterized by a summation with 
term-by-term dependency for a system with fixed intrinsic 
properties. The reason why a diverging result occurs when 
using Laplace transform method has been identified. One of 
the main distinctions falls on the steep drop of the tem- 
perature distribution near left end of the film for a finite 
value of zr, which demonstrates the delayed response of 
microstructural effects in space being lumped into the macro- 
scopic lagging behavior. An equal non-zero value for both zT 
and Zq leads the system to a lagged temperature distribution 
rather than a classicalL diffusion field. However, the steep 
drop in temperature distribution near the left end of the film 
due to the lagging effecl:s will be smoothed out into a diffusive 
type as time elapses. 
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APPENDIX 

The dependence of D, on the value ofn is listed as follows : 
(I) when Zq = 0, equation (5) is used for temperature 0 ; 
(II) when Zq # 0, equation (6) is used for temperature 0, in 
which 

(A) when zx = 0 (classical wave), 

1 1 
n < ~ + - - - - - ~ D .  > 0 (1) 

2nx/z. 
and equation (9a), F. + , is used for F., 

1 1 
n = ~ + ~ = ~ D .  = 0 (2) 

and equation (9b), F °, is used for F., and 

1 1 
n >-~ + ~ = ~ O , ,  < 0 (3) 

2n~/Zq 

and equation (9c), F~-, is used for F.; 
(B) when zT # 0, 

(1) when Zv = Zq. 

1 1 
n = ~ + ~ =" D,, = 0 (a) 

and equation (9b), F °, is used for F., and 

1 1 
n # ~ + ~ D . > 0  (b) 

 ,/Zq 

and equation (9a), F. + , is used for F.; 
(2) when zT ~ Zq, 

whenzT>Zq, * D . > 0  (a) 

and equation (9a) ; F. + , is used for F.; 

when zr < zq (b) 

1 l ,  
n > ~ +  or n <  

7~ZT ~ "5- 7~ZT 

(i) 

D. > 0 and equation (9a), F~, is used for F., 

1 ~ q q  -1- ~ g q  - -  Z T 
n = ~ + (ii) 

ggT 

D .  = 0 and equation (9b) ,  F~ °,  is used for F., and 

1 + x/~q -- ~ < n < 1 + ~ q  + Zqx//-~- zr (iii) 
2 ~z T ~z T 

D, < 0 and equation (9c), F~-, is used for F,. 


